27 research outputs found

    Soleus H-reflex Excitability Changes in Response to Sinusoidal Hip Stretches in the Injured Human Spinal Cord

    Get PDF
    Imposed static hip stretches substantially modulate the soleus H-reflex in people with an intact or injured spinal cord while stretch of the hip flexors affect the walking pattern in lower vertebrates and humans. The aim of this study was to assess the effects of dynamic hip stretches on the soleus H-reflex in supine spinal cord injured (SCI) subjects. Sinusoidal movements were imposed on the right hip joint at 0.2 Hz by a Biodex system. H-reflexes from the soleus muscle were recorded as the leg moved in flexion or extension. Stimuli were sent only once in every hip movement cycle that each lasted 5 s. Torque responses were recorded at the hip, knee, and ankle joints. A hip phase-dependent soleus H-reflex modulation was present in all subjects. The reflex was facilitated during hip extension and suppressed during hip flexion. There were no significant differences in pre- or post-stimulus soleus background activity between the two conditions. Oscillatory responses were present as the hip was maximally flexed. Sinusoidal hip stretches modulated the soleus H-reflex in a manner similar to that previously observed following static hip stretches. The amount of reflex facilitation depended on the angle of hip extension. Further research is needed on the afferent control of spinal reflex pathways in health and disease in order to better understand the neural control of movement in humans. This will aid in the development of rehabilitation strategies to restore motor function in these patients

    Modulation of Stretch Reflexes of the Finger Flexors by Sensory Feedback from the Proximal Upper Limb Poststroke

    Get PDF
    Neural coupling of proximal and distal upper limb segments may have functional implications in the recovery of hemiparesis after stroke. The goal of the present study was to investigate whether the stretch reflex response magnitude of spastic finger flexor muscles poststroke is influenced by sensory input from the shoulder and the elbow and whether reflex coupling of muscles throughout the upper limb is altered in spastic stroke survivors. Through imposed extension of the metacarpophalangeal (MCP) joints, stretch of the relaxed finger flexors of the four fingers was imposed in 10 relaxed stroke subjects under different conditions of proximal sensory input, namely static arm posture (3 different shoulder/elbow postures) and electrical stimulation (surface stimulation of biceps brachii or triceps brachii, or none). Fast (300°/s) imposed stretch elicited stretch reflex flexion torque at the MCP joints and reflex electromyographic (EMG) activity in flexor digitorum superficialis. Both measures were greatest in an arm posture of 90° of elbow flexion and neutral shoulder position. Biceps stimulation resulted in greater MCP stretch reflex flexion torque. Fast imposed stretch also elicited reflex EMG activity in nonstretched heteronymous upper limb muscles, both proximal and distal. These results suggest that in the spastic hemiparetic upper limb poststroke, sensorimotor coupling of proximal and distal upper limb segments is involved in both the increased stretch reflex response of the finger flexors and an increased reflex coupling of heteronymous muscles. Both phenomena may be mediated through changes poststroke in the spinal reflex circuits and/or in the descending influence of supraspinal pathways

    Altered Motor Unit Discharge Coherence in Paretic Muscles of Stroke Survivors

    Get PDF
    After a cerebral stroke, a series of changes at the supraspinal and spinal nervous system can alter the control of muscle activation, leading to persistent motor impairment. However, the relative contribution of these different levels of the nervous system to impaired muscle activation is not well understood. The coherence of motor unit (MU) spike trains is considered to partly reflect activities of higher level control, with different frequency band representing different levels of control. Accordingly, the objective of this study was to quantify the different sources of contribution to altered muscle activation. We examined the coherence of MU spike trains decomposed from surface electromyogram (sEMG) of the first dorsal interosseous muscle on both paretic and contralateral sides of 14 hemispheric stroke survivors. sEMG was obtained over a range of force contraction levels at 40, 50, and 60% of maximum voluntary contraction. Our results showed that MU coherence increased significantly in delta (1–4 Hz), alpha (8–12 Hz), and beta (15–30 Hz) bands on the affected side compared with the contralateral side, but was maintained at the same level in the gamma (30–60 Hz) band. In addition, no significant alteration was observed across medium–high force levels (40–60%). These results indicated that the common synaptic input to motor neurons increased on the paretic side, and the increased common input can originate from changes at multiple levels, including spinal and supraspinal levels following a stroke. All these changes can contribute to impaired activation of affected muscles in stroke survivors. Our findings also provide evidence regarding the different origins of impaired muscle activation poststroke

    A Unifying Pathophysiological Account for Post-stroke Spasticity and Disordered Motor Control

    Get PDF
    Cortical and subcortical plastic reorganization occurs in the course of motor recovery after stroke. It is largely accepted that plasticity of ipsilesional motor cortex primarily contributes to recovery of motor function, while the contributions of contralesional motor cortex are not completely understood. As a result of damages to motor cortex and its descending pathways and subsequent unmasking of inhibition, there is evidence of upregulation of reticulospinal tract (RST) excitability in the contralesional side. Both animal studies and human studies with stroke survivors suggest and support the role of RST hyperexcitability in post-stroke spasticity. Findings from animal studies demonstrate the compensatory role of RST hyperexcitability in recovery of motor function. In contrast, RST hyperexcitability appears to be related more to abnormal motor synergy and disordered motor control in stroke survivors. It does not contribute to recovery of normal motor function. Recent animal studies highlight laterality dominance of corticoreticular projections. In particular, there exists upregulation of ipsilateral corticoreticular projections from contralesional premotor cortex (PM) and supplementary motor area (SMA) to medial reticular nuclei. We revisit and revise the previous theoretical framework and propose a unifying account. This account highlights the importance of ipsilateral PM/SMA-cortico-reticulospinal tract hyperexcitability from the contralesional motor cortex as a result of disinhibition after stroke. This account provides a pathophysiological basis for post-stroke spasticity and related movement impairments, such as abnormal motor synergy and disordered motor control. However, further research is needed to examine this pathway in stroke survivors to better understand its potential roles, especially in muscle strength and motor recovery. This account could provide a pathophysiological target for developing neuromodulatory interventions to manage spasticity and thus possibly to facilitate motor recovery

    Immediate Adaptations to Post-Stroke Walking Performance Using a Wearable Robotic Exoskeleton

    Get PDF
    Objective To examine the immediate effects of a hip-assistive wearable robotic exoskeleton on clinical walking performance, walking energetics, gait kinematics, and corticomotor excitability in individuals with stroke. Design Randomized cross-over trial. Setting Research laboratory of a rehabilitation hospital. Participants Twelve individuals (4F/8M, mean age 57.8±7.2) with chronic hemiparetic stroke. Interventions Honda’s Stride Management Assist (SMA) exoskeleton, which provides torque-based flexion and extension assistance at the hip joints during walking. Main Outcome Measures The primary outcome measure was change in self-selected walking speed with the device off vs. with the device on. Secondary outcome measures included changes in clinical endurance, energy expenditure, kinematics, and corticomotor excitability of lower limb muscles. Results In a single session using the device, participants exhibited adaptations over most outcome measures. Self-selected walking speed and peak treadmill speed increased, while oxygen consumption rate decreased during overground and treadmill endurance tests. More symmetric walking patterns were observed during treadmill walking. Changes in corticomotor excitability were highly variable among participants, with a non-significant increase in excitability for the paretic rectus femoris. Conclusions The SMA hip exoskeleton causes immediate positive adaptations in walking performance in individuals with stroke when the device is in use

    Altered Motor Unit Discharge Coherence in Paretic Muscles of Stroke Survivors

    No full text
    After a cerebral stroke, a series of changes at the supraspinal and spinal nervous system can alter the control of muscle activation, leading to persistent motor impairment. However, the relative contribution of these different levels of the nervous system to impaired muscle activation is not well understood. The coherence of motor unit (MU) spike trains is considered to partly reflect activities of higher level control, with different frequency band representing different levels of control. Accordingly, the objective of this study was to quantify the different sources of contribution to altered muscle activation. We examined the coherence of MU spike trains decomposed from surface electromyogram (sEMG) of the first dorsal interosseous muscle on both paretic and contralateral sides of 14 hemispheric stroke survivors. sEMG was obtained over a range of force contraction levels at 40, 50, and 60% of maximum voluntary contraction. Our results showed that MU coherence increased significantly in delta (1–4 Hz), alpha (8–12 Hz), and beta (15–30 Hz) bands on the affected side compared with the contralateral side, but was maintained at the same level in the gamma (30–60 Hz) band. In addition, no significant alteration was observed across medium–high force levels (40–60%). These results indicated that the common synaptic input to motor neurons increased on the paretic side, and the increased common input can originate from changes at multiple levels, including spinal and supraspinal levels following a stroke. All these changes can contribute to impaired activation of affected muscles in stroke survivors. Our findings also provide evidence regarding the different origins of impaired muscle activation poststroke

    Neurorehabilitation Technology

    No full text
    XXI, 483p. 130 illus., 84 illus. in color.online

    Extracting Extensor Digitorum Communis Activation Patterns using High-Density Surface Electromyography

    Get PDF
    The extensor digitorum communis muscle plays an important role in hand dexterity during object manipulations. This multi-tendinous muscle is believed to be controlled through separate motoneuron pools, thereby forming different compartments that control individual digits. However, due to the complex anatomical variations across individuals and the flexibility of neural control strategies, the spatial activation patterns of the extensor digitorum communis compartments during individual finger extension have not been fully tracked under different task conditions.The objective of this study was to quantify the global spatial activation patterns of the extensor digitorum communis using high-density (7×9) surface electromyogram (EMG) recordings. The muscle activation map (based on the root mean square of the EMG) was constructed when subjects performed individual four finger extensions at the metacarpophalangeal joint, at different effort levels and under different finger constraints (static and dynamic). Our results revealed distinct activation patterns during individual finger extensions, especially between index and middle finger extensions, although the activation between ring and little finger extensions showed strong covariance. The activation map was relatively consistent at different muscle contraction levels and for different finger constraint conditions. We also found that distinct activation patterns were more discernible in the proximal-distal direction than in the radial-ulnar direction. The global spatial activation map utilizing surface grid EMG of the extensor digitorum communis muscle provides information for localizing individual compartments of the extensor muscle during finger extensions. This is of potential value for identifying more selective control input for assistive devices. Such information can also provide a basis for understanding hand impairment in individuals with neural disorders
    corecore